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Abstract

This paper develops generalized method of moments (GMM) estimation and infer-
ence procedures for quantile regression models when allowing for general parametric
restrictions on the parameters of interest over a set of quantiles. First, we suggest a
GMM estimator for simultaneous estimation across multiple quantiles. This estimator
exploits a partition of the quantile space, which induces a weighting matrix that is
independent of the parameters of interest and the number of partitions itself. The
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flexible since it allows for imposing restrictions on the parameters of interest over a set
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the number of partitions diverge to infinity, and derive its efficiency bound. Third, we
suggest an alternative smooth GMM estimation procedure for large number moments.
We establish the asymptotic properties of both GMM estimators. These methods have
the advantage of being simple to implement in practice. Monte Carlo simulations show
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1 Introduction

In a seminal paper, Koenker and Bassett (1978) introduced quantile regression (QR) models.

By estimating conditional quantile functions, QR models have provided a valuable tool in

economics, finance, and statistics as a way of capturing heterogeneous effects that policy

variables may have on the outcome of interest, exposing a wide variety of forms of conditional

heterogeneity under weak distributional assumptions. This is especially valuable for program

evaluation studies, where these methods help analyze how treatments or social programs

affect the outcome’s distribution.

This paper develops generalized method of moments (GMM) estimation and inference

procedures for QR models when allowing for general parametric restrictions on the param-

eters of interest over a set of quantiles. In many empirical applications, researchers are

interested in modeling a specific part of the distribution, or the entire distribution, of an

outcome of interest. For example, in extremal quantile models, the researcher is interested

in modeling the tails of the conditional distribution. These models have become popular

with an increasing number of economic, financial, and statistical applications such as value-

at-risk, analysis of tail risk over time, production frontiers, determinants of low infant birth

weights, and auction models (see Chernozhukov et al. (2017) for an overview of quantile

extremal models).1 This paper provides a useful alternative to extremal quantile regres-

sion since the imposition of parametric restrictions on the quantile coefficients allows us

to use GMM estimators we describe below. These estimators follow standard (Gaussian)

asymptotic distributions as opposed to extremal quantile regression estimators, which are

nonstandard.

There are several other examples where the proposed methods may be useful. For in-

stance, Donald and Paarsch (1993) use a parametric model to test whether the predictions

of game theory models for actions are compatible with observable data; Koenker and Geling

(2001) use parametric restrictions to estimate a QR survival analysis model. In these exam-

ples, the researcher does not need to specify the entire conditional distribution of outcomes,

but only the relationship for a subset of quantiles. Another set of examples include specifica-

tion of quantiles over the entire conditional distribution as, among others, constant treatment

effects, stochastic dominance, existence of threshold, and changes in distribution (see, e.g.,

1Chernozhukov (2005) and Zhang (2016) derive the asymptotic theory for extreme quantile estimators.
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Qu and Yoon (2017), Chiang and Sasaki (2017), Firpo and Pinto (2015), and Galvao et al.

(2011)).

The first main contribution of this paper to the literature is to develop a GMM-QR

estimator for simultaneous estimation across quantiles. Concurrent estimation of multiple

quantiles has not received much attention in the literature.2 In many applications one

simply estimates a standard QR model for a given quantile, and then varies the quantile τ in

a given grid set (see, e.g., Koenker (2005)). The proposed GMM-QR estimator, however, is

designed to estimate a fixed number of quantiles simultaneously by using moment conditions

indexed by different quantiles τ ∈ T ⊂ (0, 1). This estimator is flexible since it allows for

imposing restrictions on the parameters of interest over the set of moments. Importantly,

the GMM-QR estimator accounts for information across quantiles to improve efficiency. In

order to make the estimation procedure feasible, we exploit an equally spaced partition of

the quantile interval using a finite number of grid points, L − 1 in (0, 1), which form a

partition of the unit interval. Based on this partition, we construct moment conditions

determined by the exogenous variables and quantiles. This partitioning technique has the

advantage of producing a weighting matrix that does not depend on the parameters of

interest. We establish the asymptotic properties of the GMM-QR estimator and show that it

is consistent and asymptotically normal. By exploiting the estimation of multiple quantiles

simultaneously, under the correct restriction at the coefficients of interest, the GMM-QR

estimator is more efficient than the simple quantile-by-quantile estimation.

We then discuss the optimal GMM-QR estimator by using the optimal weighting matrix

from the standard GMM theory (see, e.g., Hall (2005)). The optimal GMM-QR also uses the

new partition matrix, which together with the optimal moment conditions for QR produce

the optimal weighting matrix. As expected, we show that the optimal GMM-QR estimator

is asymptotically more efficient than the GMM-QR estimator.

Next we study the efficiency properties of the GMM-QR estimator when the number of

partitions of the quantile interval, L, diverge to infinity. First, for large L, we derive the

limiting GMM objective function, as well as the efficiency bound from the calculation of the

2Koenker (2004) and Koenker (1984) proposed estimation for several quantiles simultaneously by consid-
ering a weighted QR estimation in which the quantiles are also predetermined. Nevertheless, these methods
do not account for information across quantiles. To the best of our knowledge, the paper that is closest to
ours is Yang and He (2012). In this paper, the authors use prior information about the relationship across
quantile and Bayesian Empirical Likelihood to estimate several quantiles jointly.
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asymptotic variance-covariance matrix of the Maximum Likelihood estimator (MLE). We

then show that even when L grows to infinity, the GMM-QR is not efficient. Nevertheless,

we show that when the number of partitions, L, diverges to infinity the optimal GMM-QR

estimator’s asymptotic variance converges to the semiparametric efficiency bound.

We also suggest GMM-QR estimation using an alternative smooth GMM (SGMM-QR)

estimator for large number of moment conditions. This SGMM-QR is based on a smooth

basis functions that uses all the information embedded in the identifying restriction. This

method has been used in the literature to obtain efficient estimators under conditional mo-

ment restrictions (See Newey (1990), Newey (1993), Donald et al. (2003)) and also un-

der independence restrictions (Poirier (2017)). We establish the limiting properties of the

SGMM-QR estimator, consistency and asymptotic normality, and show that it achieves the

lower bound as well. We note that, regarding the SGMM-QR estimator, a restriction on

the vector of parameters, which is a vector function of τ , needs to be satisfied for all τ in

its support, T . When we increase the number of partitions in the support, the number of

moments restrictions increases. The main technical difficulty with this statistical model is

that we have an infinite number of moment conditions.

Compared to the existing procedures for estimation and inference of QR models, our

approach has several distinctive advantages. First, an important application of the proposed

methods is to allow researchers to estimate models under restrictions on the coefficient

functions. Second, a direct implication of imposing restrictions on coefficients is to test hy-

potheses on the shape of the quantile curve. Third, the estimator is flexible and does not

necessarily require modeling the entire conditional distribution of the variable of interest. In

particular, our methods can be useful as an alternative to estimation of extreme quantiles.

Fourth, we derive the optimal GMM-QR, which is efficient. Finally, our algorithm is com-

putationally simple and easy to implement in practice. The proposed procedures should be

useful for those empirical settings based on QR models in which estimation of the entire or

part of the conditional quantile function is a concern. For example, in the survival analysis,

the restrictions across quantiles come from the parametric assumption about the survival

function. In the tail risk application, there is a particular relationship among the extreme

quantiles.

To illustrate the proposed methods, we consider an empirical application to a birthweight

study using data from the National Center for Health Statistics. We estimate the effects
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of various covariates (marital status, gender, smoke, number of cigarettes a day, and lack

of prenatal care) on birthweight of live infants at the extreme bottom of the conditional

distribution. Given the difficulty to perform inference at the extremes of the distribution,

the empirical results document important statistically significant effects of smoking at the

bottom tail. Although intuitive, these findings complement the existing results in the liter-

ature.

We now briefly review the literature related to this paper. The paper that is closest

to ours is Yang and He (2012). The authors impose a prior information on the quantile

coefficients across several values of quantiles. They estimate the quantiles all together using

a Bayesian Empirical Likelihood estimator. They establish the asymptotic distribution of

the posterior and compute efficiency gains from informative priors. As in our method, they

can impose restrictions in specific subsets of the quantile interval. There is also a literature

using moment conditions to estimate QR models, among many others, Xu et al. (2017),

Chen and Lee (2017), Kaplan and Sun (2017), Chen et al. (2015), Chen and Liao (2015),

Chen and Pouzo (2012, 2009), Chernozhukov and Hong (2003), and Buchinsky (1998). In

this paper, we extend the literature on GMM for conditional average models as well as that

on GMM for QR models by adapting the GMM methods for estimation and inference of

QR models allowing for imposing parametric restriction on the parameters of interest as

well as simultaneous estimation across quantiles. There is also a small literature combining

information from QR. One may consider combining information over different quantiles via

the criterion or loss function. For example, Zou and Yuan (2008) and Bradic et al. (2011)

proposed the composite QR for parameter estimation and variable selection in the classical

linear regression models. Zhao and Xiao (2014) construct efficient estimators of regression

models via QR. The paper is also related to the literature about adaptive estimators. Newey

(1988) use an adaptive GMM estimator for linear regression model. He shows that when

the number of moments increase with the sample size, the GMM estimator approaches the

MLE for that problem, assuming that the error term has a known distribution function.

Portnoy and Koenker (1989) also develop adaptive L-estimator for linear regression models

by combining information based on estimators at different quantiles for the linear regression

model. The adaptive estimator proposed by the authors is a weighted integral of linear

functions of estimators for the slope and intercept of the linear regression quantile models.

The integral is taken over the unit interval (0, 1) of possible quantile values. This adaptive
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L-estimator is similar to our GMM estimator since it uses a infinite combination of quantile

regressions for different values of quantiles in the interval (0, 1). The big different is that in

our case we use use information across quantiles and estimate all the quantiles regressions

simultaneous. As Newey (1988), we show that our estimator attains the efficient bound (the

variance of the MLE), when the number of moments increases with the sample size.

The remaining of the paper is organized as follows. Section 2 presents the statistical

model. The GMM-QR estimator is described in Section 3. Section 4 describes the MLE and

establishes the relationship between the GMM and the MLE. It also discusses the SGMM-

QR. Section 5 illustrates the methods with an application to the estimation various covariates

on birthweight. Finally, Section 6 concludes the paper. All proofs and numerical Monte Carlo

exercises are provided in a Supplemental Online Appendix.

2 Statistical Model

Many statistical models can be written as follows

Y = Γ(X,U), (2.1)

where Y is a dependent variable, X is a K-vector of regressors, and U is a scalar disturbance

that is independent of X. The potentially non-separable function Γ(·) allows for the effect

of X to depend on the unobserved component U .

Our main model is a version of the standard linear quantile regression (QR) model. Recall

the baseline model for the linear QR representation,

Y = X>β(U), (2.2)

where U represents the heterogeneity in responses. Imposing that u 7−→ X>β(u) is strictly

increasing in u with probability 1, from equation (2.2) we can write the conditional quantile

of Y given X as

QY (τ |X) = X>β(QU(τ |X)),

where τ ∈ (0, 1) is the quantile of interest and and QY (τ |X) is the conditional τ -quantile of

Y given X. Under the exogeneity assumption, i.e., the unobserved heterogeneity U is inde-
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pendent from X and without loss of generality normalizing U to have a uniform distribution

on [0, 1], U ∼ Unif[0, 1], we obtain the standard representation for the linear QR model,

QY (τ |X) = X>β(τ), (2.3)

where X ∈ X ⊂ RK . In this model, X>β(τ) is an increasing function of τ .

It is important to note that even thoughX>β (τ) is a general way to model the conditional

quantile of Y as a linear function of X, it creates an asymmetry between the effects of τ

and the effects of X on the conditional quantile function of Y . For a fixed τ , we know that

the marginal effect of changes in X on Y is β (τ), which does not depend on X. But the

marginal effect of changes in τ , for a fixed X = x, is x>∂β(τ)/∂τ , which generally depends

on τ . Thus, in standard QR models, the main parametric restrictions imposed on the model

are captured by how the observable components enter function (2.3), while the format of

how τ affects Y is left unspecified.

In this paper, we add to the linear QR model a flexible assumption about how τ affects

the conditional quantile function. We assume that the slope function can be represented as

follows

β(τ) = g(θ, τ), (2.4)

where g(·) is a K-vector of known functions and θ is a vector of unknown parameters.

Under the restriction (2.4), the model in equation (2.2) relates the dependent variable Y

as a function of observables X and the unobservable random variable U as,

Y = X>g(θ, U),

and the QR model in (2.3) is then parametrically specified in both X and τ as,

QY (τ |X) = X>β (τ) = X>g (θ, τ) .

The restriction in (2.4) can be motivated by different reasons. Theoretical models often

assume that there is some specified unobservable factor entering into the outcome equation.

Observable factors may not be entirely modeled and are in many cases treated as some

‘nuisance’ parameters or functions. Another important ‘non-structural’ reason for imposing

parametric restriction on the conditional quantile process is for inference at the tails. More-

over, the restrictions in (2.4) on how the quantiles τ enter the conditional quantile function
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Figure 1: Left box plots QR fitted lines for different quantiles. Right box plots the QR slope

coefficient as function of τ , as well as quadratic and logarithmic models.

of Y are natural in many empirical examples. For instance, in survival function analysis,

the restrictions across quantiles come from the functional form of the survival function. The

literature on estimation of tail risk in finance usually imposes restrictions on the extreme

quantiles of the distribution of Y . Now we provide two brief examples to illustrate the

parametric restrictions across quantiles in more details.

Example 2.1. First, we use the well-known Engel curve example in Koenker (2005). This is

a classical data set in economics based on 235 budget surveys of 19th century working-class

households. The left panel in Figure 1 plots the data and several fitted lines for a linear

QR model. Household expenditure on food is measured on the vertical axis, and household

income is measured on the horizontal axis. When examining the slopes coefficients, it is

possible to see that, as the quantiles increase, the slopes increase but at decreasing rates.

The points in right panel in Figure 1 are the slope coefficients as a function of quantiles τ ,

and we superpose lines with a quadratic and a logarithmic model. Thus, the pictures suggest

a concave relationship between the slope coefficients and the quantiles τ . Our method will

allow to estimate all the quantile effects simultaneously, imposing the concave curvature

across quantiles.

Example 2.2. Consider the simple case of a linear location-scale-shift QR model with one

regressor. The model can the written as

Y = b0 + b1X + σ(X)U,
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where σ(X) = (γ0+γ1X). Thus, the conditional quantile function can be written as following

QY (τ |X) = b0 + b1X + σ(X)F−1
U (τ)

= (b0 + γ0F
−1
U (τ)) + (b1 + γ1F

−1
U (τ))X

= β0(τ) + β1(τ)X,

where β0(τ) = (b0 + γ0F
−1
U (τ)) and β1(τ) = (b1 + γ1F

−1
U (τ)). For simplicity, let FU be the

Logistic distribution with location and scale parameters zero and one, respectively. Then,

F−1
U (τ) = ln τ/(1 − τ), and we have both the constant and slope coefficients varying with

the quantile τ . The function g(θ, τ) is a simple linear function as

β0(τ) = g0(θ, τ) = θ1 + θ2 ln
τ

1− τ
, β1(τ) = g1(θ, τ) = θ3 + θ4 ln

τ

1− τ
.

In Section 5 below, we provide an empirical illustration to the proposed methods with an

application to the estimation of the effects of various covariates on birthweight at the extreme

of the distribution, which is motivated by this location-scale example.

3 GMM Quantile Regression Estimation

This section presents a generalized method of moments quantile regression (GMM-QR) es-

timator when the number of moments restrictions is fixed. First, we discuss the population

moment conditions of interest. Second, we present a new partitioning argument of the quan-

tile space that we use for estimation. This partition facilitates practical implementation.

Third, we present the GMM-QR estimator and establish its asymptotic properties. Finally,

we briefly discuss the optimal GMM, and show that for a fixed number of partitions the

optimal GMM is more efficient than the GMM-QR.

3.1 Moment Conditions

We consider the model in equation (2.3). In order to describe the model in a formal way, we

impose the following assumptions.

A1. There is a random sample of size n such that the data {(Yi, Xi)}ni=1 are independent

and identically distributed (i.i.d.).

9



A2. The conditional density of Yi given Xi (fYi|Xi(y|x)) exists almost surely for every i =

1, . . . , n. Additionally, it is bounded above, bounded away from zero, and continuous

differentiable in Y , uniformly over the support of Xi.

Assumptions A1 and A2 are standard in the literature. We impose A1 only to make

presentation of the results simpler. We also impose the following restriction on the slope

function of the QR model.

A3. β0(τ) = g(θ0, τ) for θ0 ∈ Rdθ for all τ ∈ T ⊂ (0, 1), and g(·, ·) is continuous and twice

differentiable in both arguments, with gθ(·, ·) being the partial derivative with respect

to the first argument, and gu(·, ·) being the partial derivative with respect to the second

argument.

A4. There is a unique θ0 such that QY (τ |X) = X>g(θ0, τ), which is an increasing function

on τ .

Assumption A3 describes the restriction on the coefficients of interest as a function of

the quantiles. These restrictions are of interest for modeling purposes. Note that g(·) is a K-

vector of functions that are differentiable in both arguments. We assume that the functional

form of the functions into vector g(·) are known up to the vector of parameters θ, which has

dimension size Rdθ . For each component of the vector β(τ) (βj(τ), for j = 1, ..., K), we can

have a different format for the function gj(·). When we impose assumption A3, the vector of

unknown parameter is θ, and not β(τ). Condition A4 states a correct model specification.

The QR linear model in (2.3) can be represented by a conditional moment restriction as:

E
[
τ − 1

{
Y −X>β0(τ) ≤ 0

}∣∣X] = 0, (3.1)

for all τ ∈ (0, 1). This conditional moment restriction implies many unconditional moment

conditions that are going to be used to estimate β(τ). For a given τ , let

m (W ; β, τ) = qM(X, τ)
(
τ − 1

{
Y −X>β(τ) ≤ 0

})
, (3.2)

where qM(X, τ) is a Mτ -vector of subset of the conditioning (or instrumental) variables of X,

and W = [Y,X]. For a fixed quantile τ , Mτ ≥ K. In addition, notice that, in the standard

linear QR case, qM(X, τ) = X for all τ .
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In this paper, for simplicity of exposition, we work with exogenous regressors, X ∈ RK ,

for constructing the conditioning variables set. Nevertheless, we note that one is able to

interpret the conditioning set in (3.1) as a vector of instrumental variables. The results

presented in the paper extend to the case of instrumental variables as long as the moment

conditions are still satisfied.3

Using equation (3.2), we can then define the following unconditional moment condition

for the QR problem,

E [m (W ; β0, τ)] = 0. (3.3)

Several other papers in the literature, see e.g., Kaplan and Sun (2017), Chen and Liao (2015),

Chen and Pouzo (2012, 2009), use an unconditional moment condition similar to (3.3) for

estimation and inference in quantile models.

Finally, when we impose the structure g(·) across quantiles, we obtain the set of moments

conditions in (3.3) with the following m(·) function where, for a given τ , Mτ ≥ dθ

m (W ; g (θ, τ) , τ) := qM(X, τ)ψ(W, θ, τ), (3.4)

where ψ(W, θ, τ) :=
(
τ − 1

{
Y −X>g (θ, τ) ≤ 0

})
.

To make estimation for multiple quantile practical in applications, we use a partition of

the space of quantiles, which we discuss in detail in the next section. From equation (3.4),

let

m(W, θ, τ1, ..., τL−1) :=
[
m (W ; g (θ, τ1) , τ1)> , ...,m (W ; g (θ, τL−1) , τL−1)>

]>
, (3.5)

=
[
qM(X, τ1)>ψ(W, θ, τ1), ..., qM(X, τL−1)>ψ(W, θ, τL−1)

]>
,

be the
∑L−1

l=1 Mτl-vector of moments restrictions for L − 1 values of {τ1, . . . , τL−1} ⊂ (0, 1).

The index L defines the number of partitions of the quantile space, hence L−1 is the number

of quantiles. For instance, when L = 4 we have the three quartiles and four partitions. For

simplicity, we consider Mτ1 = Mτ2 = ...MτL−1
= M for now, so the dimension of vector of

moments is M · (L− 1).

We note that the weights qM(X, τ) may be a function of the quantile τ in the general

statement of the problem in (3.5). Nevertheless, it is common in the QR literature for linear

3de Castro et al. (2018) develop a GMM estimator for instrumental variables QR models where they
smooth the indicator function using the idea of Horowitz (1998).
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models to impose qM(X, τ) = X and use the moment restrictions (3.4) for a unique fixed

τ . For example, to investigate the effect at the median, we fix τ = 0.5 and use the moment

restrictions at this specific value of τ . In this case, in order to obtain identification, the

dimension of X needs to be at least equal to the dimension of θ. If we assume a very flexible

function form for g(θ, τ), we may not be able to achieve identification if we use the moment

for a specific τ as in the standard case. For instance, suppose that X is a scalar, and the

function g is linear in τ , g(θ, τ) = θ0 + θ1 · τ . In this case for a fixed τ , the dimension of X is

smaller than the dimension of θ, and we cannot obtain identification. In this case, we need

to consider the moments associated with different values of τ at the same time. In this case,

identification comes from the restrictions imposed across different values of τ .

In this section, we follow the QR literature, and with abuse of notation, set qM(X, τ) =

qM(X) for all τ . Nevertheless, we will see below that for the optimal GMM, the weights are

a function of the quantiles. When the function qM does not depend on τ , the vector m(·) in

(3.5) can be written as

m(W, θ, τ1, ..., τL−1) =
[
ψ(W, θ, τ1), ..., ψ(W, θ, τL−1)

]>
⊗ qM(X). (3.6)

In this paper, we move away from the standard QR literature, and our parameter of inter-

est is the vector of parameters θ that solves the following minimization problem considering

a set of values of τ , τ1, ..., τL (and not only one specific τ)

θ0 = argmin
θ

E [m(W, θ, τ1, ..., τL−1)]>Ω(θ, τ1, ..., τL−1)−1E [m(W, θ, τ1, ..., τL−1)] , (3.7)

where m(W, θ, τ1, ..., τL−1) is given in (3.6), and Ω(θ, τ1, ..., τL−1) is the weighting matrix that

is equal to the variance-covariance matrix of the moments conditions. Except for Koenker

(1984, 2004) and Yang and He (2012), the studies in the QR literature estimate separate

regression models for each value of τ . These simple approaches correspond to solving a GMM

set-up for a single given value of τ separately.

Note that in the system of unconditional moments restrictions in (3.7), the dimension

of unknown parameters is equal to the dimension of θ, dθ. In this case, the dimension of

the vector of instruments M needs to be at least as large as dθ. In our case, θ is the same

for all values of τ , and it is more efficient to estimate a model that considers the moments

conditions for different values of τ all together. When we consider the moments conditions
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for all τ together, even in the case that M = dθ, we have a overidentified model since the

number of equations is larger than the number of parameters.4

3.2 The Partitioning Argument

In order to make estimation over multiple quantiles τ feasible and simple, we use a partition

of the quantile space. We partition off the interval (0, 1) into L equally spaced intervals. In

this case, there are L− 1 quantiles, and the K vector β (j/L) = g (θ, j/L), j = 1, ..., L− 1.

Let

HL(W ; θ) :=

[
1

L
− 1

{
Y −X>g

(
θ,

1

L

)
≤ 0

}
, ...,

L− 1

L
− 1

{
Y −X>g

(
θ,
L− 1

L

)
≤ 0

}]>
=

[
ψ

(
W, θ,

1

L

)
, ..., ψ

(
W, θ,

L− 1

L

)]>
.

Based on this partition of the quantile space, and the moment conditions in (3.4), we can

construct a M · (L − 1) × 1 vector of moments denoted by mL(W ; gL (θ)) and defined as

follows:

mL(W ; gL (θ)) :=

[
m

(
W ; g

(
θ,

1

L

)
,

1

L

)>
,m

(
W ; g

(
θ,

2

L

)
,

2

L

)>
, ...,m

(
W ; g

(
θ,
L− 1

L

)
,
L− 1

L

)>]>
.

(3.8)

We also define the following:

gL (θ) :=
[
g(θ, 1/L)>, g(θ, 2/L)>, ..., g(θ, (L− 1) /L)>

]>
ΩL (θ) := E

[
mL(W ; gL(θ))mL(W ; gL(θ))>

]
,

where gL (θ) is a K · (L − 1) vector and ΩL (θ) is a M · (L − 1) ×M · (L − 1) covariance

matrix.

Our goal is to rewrite the population version of the GMM-QR minimization problem

in (3.7) using the partition argument. As mentioned in the previous section, the GMM-

QR considers the simple case of the moment condition in equation (3.6) where qM(X, τ) =

4In this case, we can still have a just identified case if M times the number of quantiles is equal to the
dimension of the vector of unknown parameters, θ.
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qM(X), that is, weights are independent of the quantiles. To do so, we impose one more

assumption:

A5. For fixed M , qM(X, τ) = qM(X), and the matrix ΣM := E[qM(X)qM(X)>] is positive

definite.

Assumption A5 guarantees that the weighting matrix in this overideintified GMM is well-

defined. Assumption A5 together with A4 impose identification for a fixed L. For a general

discussion on identification we refer the reader to Chen et al. (2014). This weighting matrix

will be the Kronecker product of the matrix in assumption A5 and a matrix of dimension

(L − 1) × (L − 1) that will represent the part of the weight matrix related to number of

partitions of unit interval. Thus, our parameter of interest can be written as the solution of

the following problem

θ0 = argmin
θ

QL (θ) , (3.9)

QL (θ) := E[mL(W ; gL(θ))]>Ω−1
L (θ0) E[mL(W ; gL(θ))].

Note that equation (3.9) is equal to equation (3.7) using the partition of the quantile space.

Next we present a result where we compute the population function QL (θ) as a function

of the number of partitions of the quantile space. Define

Σ−1
L := L ·


2 −1 0 · · · 0
−1 2 −1 · · · 0

0 −1
. . . . . . 0

...
...

. . . 2 −1
0 0 0 −1 2

 . (3.10)

Lemma 3.1. Under conditions A1-A5, the objective function of the partition GMM problem
QL(θ) in (3.9) can be expressed as:

QL (θ) = (E [HL(W ; θ)⊗ qM (X)])> ·
(
Σ−1
L ⊗ Σ−1

M

)
· (E [HL(W ; θ)⊗ qM (X)]) .

The result in Lemma 3.1 shows an important intermediate result in this paper. By

using the partition in (3.8), the objective function QL (θ) in (3.9) simplifies substantially

and becomes very tractable for statistical analysis. The main simplification is on the inverse

of weighting matrix, ΩL(θ0), which can be written as Σ−1
L ⊗ Σ−1

M . Therefore, the weighting

matrix in the population function does not depend on the parameter θ.

14



3.3 GMM-QR Estimator

Now we suggest a GMM-QR estimator based on a set of the moments that are the sample

analog of the ones in equation (3.9). The GMM-QR estimator is defined as,

θ̂M,L
GMM = argmin

θ

(
1

n

n∑
i=1

mL(Wi; gL(θ))

)>
(Σ−1

L ⊗ Σ̂−1
M )

(
1

n

n∑
i=1

mL(Wi; gL(θ))

)
, (3.11)

with

Σ̂M =
1

n

n∑
i=1

qM(Xi)qM(Xi)
>,

mL(·) given in (3.8), and Σ−1
L given in (3.10).

In addition, as we showed in Lemma 3.1, the weighting matrix in this GMM problem

does not depend on unknown parameters and part of the weighting matrix does not need to

be estimated.

By imposing two additional assumptions in our model, we can establish consistency and

asymptotic normality of GMM-QR estimator. Consider the following conditions

A6. θ0 ∈ int(Θ) where Θ is a compact subset of Rdθ .

A7. Let h (X, θ, U) = X>g(θ, U). For all θ, θ′ ∈ Θ, |h−1(X, θ, Y )− h−1(X, θ′, Y )| ≤ κ(X, Y )‖θ−
θ′‖, where E[κ(X, Y )2] <∞.

Assumptions A6-A7 are standard in the GMM literature. A6 requires compactness of

the parameter space. Condition A7 imposes restriction on h−1(X, θ, Y ) requiring it to be

Lipschitz.

Before we present the results on the limiting properties of the estimator, we define the

several population quantities. Let

GlL(X, θ0) := fY |X

(
X>g

(
θ0,

l

L

))
X>gθ

(
θ0,

l

L

)
GL(X, θ0) := (G1L(X, θ0)>, . . . , GL−1,L(X, θ0)>),

where gθ
(
θ0,

l
L

)
is a K×dθ matrix, GlL(X, θ0) is a 1×dθ vector and GL(X, θ0) is a dθ×(L−1)

matrix.

Now we state the result for asymptotic normality of the GMM-QR estimator.
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Theorem 3.1. Let Assumptions A1–A7 hold and let ∂
∂θ>

E[mL(Wi; gL(θ)] have full row rank

when θ = θ0. Then, as n→∞
θ̂M,L
GMM

p−→ θ0,

and
√
n(θ̂M,L

GMM − θ0)
d−→ N

(
0, V −1

L

)
.

where VL := (E[GL(X, θ0)⊗ qM(X)>])(ΣM ⊗ ΣL)−1E[GL(X, θ0)⊗ qM(X)>]>.

The proof of Theorem 3.1 is established by verifying that the required conditions of

Theorem 2.6 in Newey and McFadden (1994) for consistency of a M-estimator are satisfied

and that the conditions for asymptotic normality of this class of estimators stated in Theorem

7.2 of Newey and McFadden (1994) are also satisfied.

An interesting implication of Theorem 3.1 is the convergence of the estimator for the

parameters β in restriction (2.4).

Corollary 3.1. Let β̂(τ) = g(θ̂, τ). Under conditions of Theorem 3.1, as n→∞

√
n(β̂(τ)− β(τ))

d−→ N
(
0, gθ(θ0, τ)>V −1

L gθ(θ0, τ)
)
.

The standard approach used to estimate linear QR model can be viewed as estimating

a moment restriction for one quantile at the time. In this case, as we mentioned before, we

need the dimension of qM(X) to be at least equal to the dimension of the vector of unknown

parameters, θ. Note that estimating equation by equation (or quantile by quantile) is less

efficient than estimate many moments at the same (multiple quantiles simultaneously). In

the second case, we are always in the overidentified case and could use a weight matrix

that minimizes the variance of the estimator. Estimating the model quantile by quantile

is a particular case of using multiple quantile moments restrictions in the estimation. In

order to get this particular case, in the GMM overidentified case we should use a specific

weight matrix that put weight equals one in the moment restriction associated with the

specific quantile and zero in the other restrictions. From the GMM theory, we know that

this particular weight matrix does not give the GMM estimator with lowest variance among

all the GMM that considers the set of full moments.
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3.4 Optimal GMM-QR Estimator

In this section, we use the standard GMM theory (see, e.g., Hall (2005)) to derive the optimal

GMM estimator based on the condition moment restrictions (3.1) for all the L−1 quantiles.

We show that this estimator will depend on the estimation of the conditional density function

of Y given X and it attains the efficient bound.

We can define the vector of conditional moment restrictions at the true value θ0 as,

E [HL(W ; θ0)|X] = 0.

This vector of conditional moments conditions implies a vector of unconditional moments

conditions:

E [q∗M(X,L)HL(W, θ0)] = 0,

where q∗M(X,L) is a dθ × (L − 1) matrix of functions of X that minimizes the asymptotic

variance of the GMM estimator. We write q∗M(X,L) instead of q∗M(X, τ) to emphasize the

use of the partition of the quantile space.

Using the optimal GMM theory, q∗M(X,L) is given by:

q∗M(X,L) =
∂

∂θ>
E [HL(W ; θ)|X]|θ=θ0 · E

[
HL(X, Y, θ0) · HL(X, Y, θ0)>

∣∣X]−1
, (3.12)

= GL(X, θ0) · Σ−1
L ,

since E
[
HL(X, Y, θ0) · HL(X, Y, θ0)>

∣∣X] = ΣL, and ∂
∂θ>

E [HL(W ; θ)|X]|θ=θ0 = GL (X, θ0).

The first part of equation (3.12), together with the standard theory on GMM, imply that

a feasible optimal GMM would involve estimating the conditional density and evaluating it

at the estimated conditional quantile. The estimate of the τ -th conditional quantile would

be X>g
(
θ̂, τ
)

, where θ̂ would be, for instance, the consistent GMM-QR estimator proposed

above.

From the optimal GMM theory, an optimal estimator reaches the efficiency bound for

the optimal GMM, which is given by the inverse of the following variance-covariance matrix5

V ∗L = E[GL(X, θ0)Σ−1
L GL(X, θ0)>]. (3.13)

The GMM-QR estimator in (3.11) does not use the optimal weighting matrix, hence, as

5See Supplemental Appendix A.4 for a brief discussion of the optimal GMM estimator.
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the result in Theorem 3.1 shows it is not efficient, VL does not reach the lower bound in

(3.13). However, the GMM-QR estimator has the advantage that it does not need estimates

of the density function as required by the optimal GMM. Thus, practical implementation of

GMM-QR is simpler.

Now we formally compare the variance of the GMM-QR, VL, given in Theorem 3.1 with

the variance of the optimal GMM, V ∗L , given in equation (3.13). The next result shows that,

for a fixed number of partitions L, the variance of the optimal GMM is smaller than that of

the GMM-QR.

Lemma 3.2. Under Assumptions A1–A7, we have that for a fixed L, V ∗L ≥ VL, in the

positive semidefinite sense.

4 Many Moments

In this section, we develop methods for a large number of quantiles, that is, partitions L, as

well as variables in the conditioning set, M . First, we investigate the properties of the GMM-

QR estimator defined in the previous section when L diverges to infinity. In order to establish

the efficient bound for this problem, we briefly write the maximum likelihood estimator

(MLE), and show its relationship with the GMM-QR. Then, we propose an alternative

smooth GMM estimator for a large number of moments restrictions. The asymptotic variance

matrix of the smooth GMM-QR coincides with the asymptotic variance of the MLE.

4.1 GMM Objective Function with Large Number of Quantiles

We start by investigating the properties of the GMM population objective function QL(θ)

in (3.9) when L diverges to infinity and the partitioning set becomes dense. The dimension

of the vector of conditioning variables or instruments (qM(X, ·)) is kept constant. In other

words, L increases, and M is fixed.

Lemma 4.1. Assume A1-A5 and that

lim
τ↓0

1

τ
· E
[
m(W ; g(θ, τ), τ)>

]
Σ−1
M E [m(W ; g(θ, τ), τ)] =

lim
τ↑1

1

1− τ
· E
[
m(W ; g(θ, τ), τ)>

]
Σ−1
M E [m(W ; g(θ, τ), τ)]

= 0.
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Then, for fixed θ,

lim
L→∞

QL (θ) = Q (θ) ,

where

Q (θ) =

∫ 1

0

(
E

[(
fY |X

(
X>g (θ; τ) ; θ0

)
fY |X (X>g (θ; τ) ; θ)

)
qM (X)>

]
Σ−1M E

[
qM (X)

(
fY |X

(
X>g (θ; τ) ; θ0

)
fY |X (X>g (θ; τ) ; θ)

)])
dτ

− E
[
qM (X)>

]
Σ−1M E [qM (X)] ,

which is uniquely minimized at θ0 and Q (θ0) = 0.

The conditions in Lemma 4.1 requiring the lower and upper limits of the population

objective function being negligible as τ → 0 and τ → 1, respectively, rule out the boundary

cases. These conditions relate with the standard requirement in the QR literature that

restricts analysis only on the open interval of τ ∈ (0, 1). We can interpret these assumptions

in Lemma 4.1 as identification conditions, since they exclude possible lack of identification

at the boundaries.

Lemma 4.1 shows that when the number of partitions diverge to infinity, QL (θ) converges

to population function that is minimized at the true parameter value, θ0. This is important

to guarantee that the objective function has a unique minimum at the true parameter when

the number of partitions become dense as long as the contribution of the objective func-

tion evaluated at quantile values at the boundary is close to zero. This result guarantees

identification of the parameters of interest when L diverges to infinity and the partitioning

set becomes dense. In addition, Lemma 4.1 provides an interesting form of the population

objective function when the number of partitions is large. To fix the ideas consider the case

where qM(X) = X = 1, i.e., the case with the marginal distribution of Y and not with the

conditional distribution of Y on X. In this particular case, called unconditional case, from

Lemma 4.1, we can write the objective function as:

Q (θ) =

∫ 1

0

(
fY (g (θ; τ) ; θ0)

fY (g (θ; τ) ; θ)

)2

dτ − 1

= E

[
fY (Y ; θ0)

fY (Y ; θ)

]
− 1, (4.1)
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which is a Kullback–Leibler divergence criterion.6

The result of Lemma 4.1 can also be derived by an application of results in (Parzen,

1970, p. 30), (Carrasco and Florens, 2000, p. 816) and (Sacks and Ylvisaker, 1968, p. 86)

on Reproducing Kernel Hilbert Spaces.7

4.2 Efficiency Bound

Now we derive the efficiency bound from the calculation of the asymptotic variance-covariance

matrix of the MLE. By definition, the MLE maximizes a recentered version of the average

log-likelihood function,

θ̂MLE = arg max
θ

1

n

n∑
i=1

ln
(
fY |X (Yi, Xi; θ)

)
= arg min

θ

1

n

n∑
i=1

ln

(
fY |X (Yi, Xi; θ0)

fY |X (Yi, Xi; θ)

)
. (4.2)

In order to derive the properties of the MLE, we use again the representation Y = X>g(θ, U)

where U ∼ Unif[0, 1] independently of X. We start by deriving the log-likelihood function.

From h (X, θ, U) = X>g(θ, U) in assumption A7, we have that

P (Y ≤ y|X = x; θ) = P (x>g(θ, U) ≤ y|X = x; θ)

= P (h (x, θ, U) ≤ y|X = x; θ).

Assuming that h has a well-defined inverse function,

P (Y ≤ y|X = x; θ) = P (U ≤ h−1 (x, θ, y)),

6Recall that the classical Kullback–Leibler criterion between the densities fYi
(·; θ0) and fYi

(·; θ) is∫
ln

(
fYi (Yi; θ0)

fYi
(Yi; θ)

)
fYi (Yi; θ0) dy ≈

∫ (
fYi (Yi; θ0)

fYi
(Yi; θ)

− 1

)
fYi (Yi; θ0) dy = Q (θ)

and the approximation is the one from the log of the ratio to the rate of change.
7See Supplemental Appendix A.7 for a proof of this result.
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and the conditional density of Y given X at θ is

fY |X(y|x; θ) =
∂

∂y
h−1 (x, θ, y)

=
1

x>gu(θ, h−1 (x, θ, y))
, (4.3)

where gu(x, u) = ∂
∂u
g(x, u) ∈ RK . Using this derivation, the log-likelihood at a given θ is

ly|X (y|x; θ) =
n∑
i=1

− lnx>gu(θ, h
−1 (x, θ, y)).

We can also derive the score function SY |X(y|x; θ) ∈ Rdθ as8

SY |X(y|x; θ)> = −
(
x>guθ(θ, h

−1 (x, θ, y))

x>gu(θ, h−1 (x, θ, y))
− x>guu(θ, h

−1 (x, θ, y))

x>gu(θ, h−1 (x, θ, y))

x>gθ(θ, h
−1 (x, θ, y))

x>gu(θ, h−1 (x, θ, y))

)
.

Define S(·) as the score evaluated at the true parameter θ0 as

S(Xi, Yi, θ0) := SY |X(Yi|Xi; θ0).

Using the fact that h (Xi, θ, Ui) = X>i g(θ, Ui) in Assumption A7, we obtain the following

expression for S(Xi, Ui, θ0),

S(Xi, Ui, θ0) =

(
X>i guu(θ0, Ui)

X>i gu(θ0, Ui)

X>i gθ(θ0, Ui)

X>i gu(θ0, Ui)
− X>i guθ(θ0, Ui)

X>i gu(θ0, Ui)

)>
.

Based on the score evaluated at the true parameter, we are able to find the efficiency bound

for this problem based on the following information matrix,

I(θ0) = E[S(X,U, θ0)S(X,U, θ0)>], (4.4)

where I(θ0) is the information matrix. The asymptotic variance of the MLE is the inverse of

the information matrix, and the inverse of the information matrix represents the efficiency

bound for this quantile problem.

8See Supplemental Appendix A.8 for details of the derivation.
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4.3 Efficiency of GMM-QR with Large Number of Quantiles

Now we study the properties of the GMM estimators discussed in the previous section when

L is large. First, we show that, as L diverges to infinity, the GMM-QR estimator does

not reach the efficiency bound. Second, we show that the variance of the optimal GMM

estimator reaches the lower bound.

The following result relates the asymptotic variance of the GMM-QR estimator described

in Section 3.3 to the lower bound derived in Section 4.2

Lemma 4.2. Under Assumptions A1–A7, and

lim
τ↓0

1

τ
· E
[
fY |X

(
X>g (θ0, τ)

)
g>θ (θ0, τ)X ⊗ qM (X)>Σ

−1/2
M

]
E
[
fY |X

(
X>g (θ0, τ)

)
X>gθ (θ0, τ)⊗ Σ

−1/2
M qM (X)

]
=

lim
τ↑1

1

1− τ
· E
[
fY |X

(
X>g (θ0, τ)

)
g>θ (θ0, τ)X ⊗ qM (X)>Σ

−1/2
M

]
· E
[
fY |X

(
X>g (θ0, τ)

)
X>gθ (θ0, τ)⊗ Σ

−1/2
M qM (X)

]
= 0.

As L→∞, we have that, limL→∞ VL ≤ I(θ0), in the positive semidefinite sense.

Now we establish a result on the variance of the optimal GMM estimator discussed in

Section 3.4. The result in Lemma 3.2 shows that, for a fixed number of partitions L, the

variance of the GMM-QR estimator is larger than the efficient bound. In the next result we

show that, when L diverges to infinity, the variance of the optimal GMM estimator reaches

the efficiency bound.

Lemma 4.3. Under assumptions A1–A7, and

lim
τ↓0

1

τ
· E
[[
fY |X

(
X>g (θ0, τ)

)
g>θ (θ0, τ)X

]
·
[
X>fY |X

(
X>g (θ0, τ)

)
gθ (θ0, τ)

]]
=

lim
τ↑1

1

1− τ
· E
[[
fY |X

(
X>g (θ0, τ)

)
g>θ (θ0, τ)X

]
·
[
X>fY |X

(
X>g (θ0, τ)

)
gθ (θ0, τ)

]]
= 0.

As L→∞, we have that

lim
L→∞

V ∗L = I(θ0),

where I(θ0) is the Fisher-information matrix.

Lemma 4.3 shows that if we use the optimal GMM estimator considering the conditional

moment on X, when L goes to infinity, the asymptotic variance of the GMM estimator

attains the information matrix. Note that this optimal GMM estimator is based on the
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original moments, writing the moment function as a function of Yi, and not Ui. In the next

subsection, we investigate the asymptotic properties of an alternative smooth GMM-QR

estimator, which is a smooth GMM for QR models for a different set of moments restrictions

that is defined in the objective function in (4.5) below.

4.4 Smooth GMM-QR Estimator

In this section, we generalize the estimators developed in the paper for fixed L and M , and

suggest an efficient, smooth GMM-QR estimator that considers a large number of moments

restrictions. This alternative estimator is based on the approach proposed by Poirier (2017)

to obtain a different GMM estimator based on smooth basis functions that cover all the

information embedded in the identifying restriction. In this case, we modify the moment

restrictions used to compute our estimator.

When Y = X>g(θ0, U) ≡ h(X, θ0, U) is strictly increasing in U , we can equivalent write

U = h−1(X, θ0, Y ) such that U is independent of X. This independence restriction between

the unobservable U and X and the normalization that U follows a uniform distribution on

[0, 1], U ∼ Unif[0, 1], will form the basis of the estimator below. Independence of U and

X is equivalent to E [(r(U)− E[r(U)])l(X)] = 0 holding for any functions r(·) and l(·). Let

qmM(x) be basis functions for x and let plL(u) be mean-zero basis functions of u. For example,

consider polynomials, splines, or other sets of functions which can continuously approximate

continuous functions. Given that U is distributed Unif[0, 1], any basis function p̃lL(u) can

be demeaned by taking plL(u) = p̃lL(u)−
∫ 1

0
p̃lL(v)dv. Also let pL(u) = [p1L(u), ..., pL−1,L(u)]

and qM(x) = [q1M(x), ..., qMM(x)]. Note that in this new estimator, L and M indicates the

smooth degree of the basis functions of U and X, so when L and M go to infinity, all the

information embedded in the independence restriction is used to form the estimator.

Using these smooth basis functions for u and x, we use the vector of moments E [mL,M(Wi; θ)]

in order to define a new smooth GMM-QR (SGMM-QR) estimator,

θ̂M,L
SGMM = argmin

θ∈Θ

(
1

n

n∑
i=1

mL,M(Wi; θ)

)> (
Σ̂−1
L ⊗ Σ̂−1

M

)( 1

n

n∑
i=1

mL,M(Wi; θ)

)
, (4.5)

where mL(W ; θ) = pL(h−1(X, θ, Y )) ⊗ qM(X), Σ̂−1
M is as defined in model (3.11), and Σ̂L =

1
n

∑n
i=1 pL(h−1(Xi, θ̃, Yi))pL(h−1(Xi, θ̃, Yi))

>, with θ̃ in the last equation being a first stage
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root-n consistent estimator for θ. One example of θ̃ is the GMM-estimator for fixed M and

L proposed in the previous sections.

This is the estimator in Poirier (2017) with one difference, the demeaned basis functions

plL(u). This implies that the estimating equations correspond to moment equations instead

of covariance equations as in Poirier (2017). Under his assumptions, we can show the same

result as in Poirier (2017), except to a smaller asymptotic variance matrix. This smaller

asymptotic variance is due to the fact that we know the baseline distribution of h−1(X, θ, Y )

under θ = θ0, which is uniform, instead of being unrestricted. The next example provides

an illustration of this model.

Example 4.1. Let Y = β0(U)+Xβ1(U) where β0(τ) = θ1+θ2 log τ
1−τ , β1(τ) = θ3+θ4 log τ

1−τ

for τ ∈ (0, 1). For a given parameter value θ̃ = (θ̃1, θ̃2, θ̃3, θ̃4), we can write unobservable U

as

U = h−1(X, θ̃, Y )

= exp

(
Y − θ̃1 − θ̃3X

θ̃2 + θ̃4X

)
/

(
1 + exp

(
Y − θ̃1 − θ̃3X

θ̃2 + θ̃4X

))
.

Given that θ is point identified in this model under mild additional assumptions, we

obtain that h−1(X, θ̃, Y )|X ∼ Unif[0, 1] is equivalent to θ̃ = θ and, moreover, all the model

restrictions are embedded in this independence restriction.

The estimator we propose below considers the approximate independence restriction

E

[{
plL

[
exp

(
Y − θ̃1 − θ̃3X

θ̃2 + θ̃4X

)
/

(
1 + exp

(
Y − θ̃1 − θ̃3X

θ̃2 + θ̃4X

))]
−
∫ 1

0

plL(v)dv

}
qmM(X)

]
= 0

for l = 1, . . . , L, and m = 1, . . . ,M . Note the form of this approximate independence

restriction is a moment restriction. Letting L,M → ∞, this approximate independence

restriction becomes exact, assuming some regularity conditions about basis functions we

make formal below.

Here are some additional assumptions to allow to use of Theorem 3.4 in Poirier (2017):

B1. (Basis function) plL(·) and qmM(·) are bounded and continuously differentiable every-

where;
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B2. (P-Donsker Classes) {qmM(Xi) : m ∈ N}, {plL(h−1(X, θ, Y )) : l ∈ N, θ ∈ Θ}
and {p′lL(h−1(X, θ, Y )) ∂

∂θ
h−1(X, θ, Y ) : l ∈ N, θ ∈ Θ} are uniformly bounded P-

Donsker classes;

B3. (Approximation) For any bounded continuous function f(z, u, θ) there exists βML(θ),

a ML× 1 vector such that supx∈X ,u∈U ,θ∈Θ |f(x, u, θ)− (pL(u)⊗ qM(x))βML(θ)| → 0 as

L and M goes to infinity;

B4. (Eigenvalues) The minimum eigenvalues of E[pL(h−1(X, θ, Y ))pL(h−1(X, θ, Y ))>] and

E[qM(X)qM(X)>] are bounded above and bounded below by the function C/ζ(L) and

C/ζ(M) uniformly in θ, where ζ(L) is a known function with ζ(L) → ∞ as L → ∞,

and C > 0 is a constant;

B5. (Differentiability) h−1(X, θ, Y ) is twice continuously differentiable in θ a.s. - X.

Examples of basis functions that satisfy these assumptions include polynomials, or cubic

splines: see Propositions 3.2 and 3.3 in Poirier (2017). Under some conditions, for cubic

splines the corresponding function is ζ(m) = m, while for power series it is ζ(m) = m2. See

Donald et al. (2003). We require these functions to be smooth approximating basis functions

and therefore indicators are ruled out by these assumptions.

Under these assumptions and an additional condition regarding the rate of growth of the

number of basis functions, we can show that the GMM estimator in (4.5) is asymptotically

efficient attaining the efficient bound in equation (4.4).

Theorem 4.1 (Consistency and Asymptotic Normality). Let Assumptions A1-A7 and B1-

B5 hold, and let θ̃ be a preliminary first-step estimator of θ0 that satisfies ‖θ̃−θ0‖ = Op(cn).

Then, if M2ζ(M)2L2ζ(L)2
(
cn + 1√

n

)
→ 0 and M,L→∞ as n→∞, then

θ̂M,L
SGMM

p−→ θ0,

and
√
n(θ̂M,L

SGMM − θ0)
d−→ N (0, V ∗) ,

where V ∗ = I(θ0)−1 is the efficiency bound for this problem.

The first-step, consistent estimator can be for example θ̂M,L
GMM which converges to θ0 at

the rate τn = n−1/2.
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In an Online Supplemental Appendix, we compare the finite sample performances of the

proposed GMM-QR, the optimal GMM-QR, the SGMM-QR, and the standard QR estimator

which is estimated quantile by quantile using a Monte Carlo exercise.

4.5 Selecting the Number of Moments

For all the estimators proposed in this paper, one must select the number of moments,

which is either L− 1 or (L− 1)×M . In some cases this number must converge to infinity

subject to rate constraints, but the finite sample choice of these numbers can be done using

a number of different approaches. Nagar (1959) proposes a method for obtaining the finite

sample MSE of estimators using higher-order expansions of the objective function. Donald

and Newey (2001) and Donald et al. (2009) use this method to propose a selection criterion

for the number of moments in models with instruments, also see Donald et al. (2008). An

interesting alternative would be the use of cross-validation, which has the advantage of being

fully data-driven. Recent work by Komiyama and Shimao (2018) explores this possibility.

In the Monte Carlo exercises, in the Supplemental Appendix, we explore the leave-many

cross-validation similar to the one suggested by Komiyama and Shimao (2018) to choose L

for a fixed value of M . For a given sample, we randomly split it into J partitions. We denote

these partitions by {Sj}Jj=1. Let θ̂(L) denote an estimator computed using L − 1 vector of

moments. Denote θ̂−Sj(L) the estimator computing using all the sample except the partition

Sj, j ∈ {1, 2 . . . J}. We choose the optimal L that minimizes the mean squared error (MSE):

J∑
j=1

∑
i∈Sj

∫ 1

0

(
yi − x>i g

(
τ ; θ̂−Sj(L)

))2

dτ. (4.6)

Alternatively, we can also choose the L by minimizing the `1 loss function,

J∑
j=1

∑
i∈Sj

∫ 1

0

ρτ

(
yi − x>i g

(
τ ; θ̂−Sj(L,M)

))
dτ, (4.7)

where ρτ (u) = (τ − 1{u < 0}) · u is the check function.

For sample size equals to 1, 000 and 1, 000 simulations, the results of the Monte Carlo in

the Supplemental Appendix show that using both criteria choose L that delivers estimators

with low values for the Root Mean Square Error (RSME) and good coverage. So, the leave-
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many cross-validation seems a reasonable criterion to choose L for a fixed value of M .

5 Application

In this section we illustrate the practical use of the proposed GMM quantile regression

(GMM-QR) methods by estimating the effects of various covariates on birthweight of live

infants at the extreme bottom of the conditional distribution.9 For comparison, we also

report results for the extremal quantile of Chernozhukov and Fernández-Val (2011). The

failure of the Gaussian laws for extremal quantile has been extensively documented, and more

accurate approximations for extreme quantiles have been developed (see, e.g., Chernozhukov

and Fernández-Val (2011)). The methods we propose in this paper constitute an alternative

to extremal quantile, since standard asymptotic inference is valid for the proposed GMM-QR

estimators, even at the tails.

Recently birthweight has been shown to be the foremost telltale of infant health. Un-

healthy births have large economic costs in both immediate medical costs and longer care

costs. Infants are classified as low birthweight (LBW) when weighing less than 2.5 kilograms

at birth. There exists empirical evidence showing that the direct medical costs of LBW are

very high. Almond et al. (2005) document that the hospital costs for newborns are elevated:

the expected cost of delivery and initial care of a baby weighing one kilogram at birth can

exceed $100,000 (in year 2000 dollars). The costs remain elevated even among babies weigh-

ing 2–2.1 kilograms; an additional pound (454 grams) of weight is still associated with a

$10,000 difference in hospital charges for inpatient services.10 The infant mortality rate also

increases at lower birthweights.

We replicate Chernozhukov and Fernández-Val (2011) empirical application using the

June 1997 Detailed Natality Data published by the National Center for Health Statistics.

We select a sample of 31,912 children born in the United States to black mothers, aged 18 to

45 years old. We focus on extremely low birthweight quantiles, considering percentiles within

the subset (0, 0.025). The dependent variable is the birthweight (in kilograms). The set of

covariates includes a dummy variable that takes the value one if the mother smoked during

9Previous quantile estimation approaches to estimating birthweight outcome regressions include, among
others, Abrevaya (2001), Koenker and Hallock (2001), and Chernozhukov and Fernández-Val (2011).

10Expenditures, such as radiological, pharmaceutical, respiratory, and laboratory fees, greatly extend the
costs of intensive care for LBW infants (see, e.g., Behrman et al. (2007)).
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pregnancy (Smoker), and another variable to account for the average cigarettes smoked per

day (Cigarette’s / Day). In addition, two dummy covariates that capture whether the mother

was married (Married) and whether the child is male (Boy), and a dummy that takes the

value one for mothers with no prenatal visits are included (No Prenatal).

Since we are interested on inference at the extreme tail, we compute the GMM-QR

estimator over the subset (0, τ ∗) (GMM-Standard-τ ∗), where we set τ ∗ equal to 0.03. The

estimator uses moment conditions for τ ∈ (0, τ ∗).11 We choose L (number of partitions in the

GMM-QR) using the leave-many-out cross-validation, where we randomly split our dataset

in two halves. We use both MSE and check-function-based criteria and consider values for

L between 20 and 100. We report the results from the MSE criterion. The estimated model

can be motivated by a simple location-scale model as y = g(θ; τ)′X = X ′β + (X ′γ)e where

X ′γ is almost surely nonnegative. We assume that e is independent from X and follows a

Weibull distribution.12

The empirical results are displayed in Figure 2, where we plot the GMM-QR estimates

of the conditional quantile partial effects (CQPE) and their corresponding 90% confidence

intervals for the selected covariates, over the interval (0,0.025). We also report estimates from

standard QR point estimates together with its corresponding extremal inference procedure

of Chernozhukov and Fernández-Val (2011).

Figure 2 shows that the estimates of CQPE are relatively flat along the bottom tail of

the distribution for all considered covariates. Also, confidence intervals from the GMM-QR

are narrower than those of Chernozhukov and Fernández-Val (2011) except for variables

“Smoker” and “Cigarette’s/Day” at the very bottom extreme (τ < 0.015). Neither the

extremal nor the GMM-QR procedures captures significant effects of “Smoker”, but the latter

finds a statistically significant and negative effect of “Cigarette’s/Day” for τ ∈ (0.015, 0.025)

while the former does not. According to both estimators the effect of “Married” and “No

prenatal visits” are not significant at the 90% level, while the dummy “Boy” is significant

and positive for the GMM-Standard but it is not for the extremal inference.

Another advantage of the GMM-QR that can be observed in Figure 2 is that it is smooth

11The weighting matrix Σ−1L is not exactly the same as when estimating the entire (0,1) interval for τ , but
it is still deterministic.

12The Weibull specification is given by g(θ; τ)>X =
[
θ1 + θ2

(
− ln(1− τ)

1
k

)]>
X, where θ and k are

unknown parameters to be estimated. We also considered other specifications like Normal, Logit or linear.
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Figure 2: GMM-QR estimates of CQPE at the bottom tail of live infants’ birthweights
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(by construction), while confidence intervals from the extremal quantile approach are not,

and thus they must be smoothed after estimation.

Summarizing, given the difficulty to perform inference at the extremes of the distribution,

the GMM-QR estimates capture important statistically significant effects of some of the

considered covariates at the bottom tail and the signs of the effects are in line with intuition:

positive effects of “Boy” and negative effects of “Cigarette’s /Day”. These results allow us

to conclude that there are efficiency gains in our approaches relative to other procedures

that estimate the CQPE separately for each τ , as we formally demonstrate in this paper.

6 Conclusion

In this paper, we develop generalized method of moments (GMM) estimation and inference

procedures for QR models, allowing for parametric restrictions across the quantile. First, we

propose an estimator that calculates simultaneously all the quantile effects for a fixed number

of quantiles. We show that this estimator is
√
n-consistent, but it does not attain the efficient
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bound. Using a large number of moments and a large basis functions for the explanatory

variables (X), we propose a smooth GMM estimator that attains the efficient bound. Our

methods can be applied to many examples, including survival analysis and structural models.

In addition, this method is very useful in the estimation and inference of extreme quantiles.

Using our method, the researcher can estimate a model, imposing restrictions across the

extreme quantiles. The advantage is that the estimator is
√
n-consistent if only part of the

quantile process is estimated (like only the extreme quantiles). Also, our method allows to

estimate all the quantiles together, imposing different restrictions in different parts of the

quantile process.

Monte Carlo simulations, in the Online Supplemental Appendix, show numerical evidence

of the finite sample properties of the methods. Finally, we apply the proposed methods to

estimate the effects of various covariates on birthweight of live infants at the extreme bottom

of the conditional distribution.
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